Acetoxyborohydride: A Simple Selective Hydroborating Agent

C. Narayana and M. Periasamy* School of Chemistry, University of Hyderabad Hyderabad 500134, India

Abstract: Acetoxyborohydride (CH₃COOBH₃) hydroborates olefins in the presence of some reducible functional groups.

In the course of our investigation on the carbonylation of organometallics,¹ we have observed that a mixture of mercuric acetate (Imole) and sodium borohydride (2mole) in anhydrous tetrahydrofuran (THF) hydroborates olefins. The corresponding alcohols can be isolated in good yields after oxidation with $H_2O_2/\tilde{O}H$ (Table). However, the hydroboration is relatively slow and only one equivalent of olefin reacts in 12h at room temperature. Presumably, the reaction of sodium borohydride with mercuric acetate would produce acetoxyborohydride species.²

 $Hg(OOCCH_3)_2 + 2NaBH_4 \longrightarrow 2CH_3COOBH_3 + 2Na^+ + H_2 + Hg$

We wish to report that such acetoxyborohydride species which can also be prepared readily by the addition of acetic acid (Imole) to $NaBH_4$ (Imole) in THF,³ is useful for applications in the selective hydroboration of alkenes in the presence of some reducible functional groups and also promising for the preparation and utility of mono- and dialkyl organoboron species.

It has been reported that addition of acetic acid (lmole) into a mixture of olefin (3mole) and NaBH₄ (lmole) in THF at 15-20°C for 1h followed by further stirring for 2h at room temperature gives R_3B in the case of terminal olefins.⁴ However, we have observed that if 1-decene is added after the addition of acetic acid (20mmol) into NaBH₄ (20mmol) in THF (60ml) at 0°C for 1h and further stirring the reaction mixture for 1h at room temperature, only one equivalent of 1-decene (20mmol) reacts in 12h at room temperature (Table). Clearly, complexation of the borane species with the acetate anion reduces the rate of hydroboration.

		Yield ^C [%]	
Alkene	Product	Method A ^d	Method B ^e
$CH_3(CH_2)_7CH = CH_2$	сн ₃ (сн ₂) ₈ сн ₂ он	70	76
CH=CH2	CH ₂ CH ₂ CH ₂ OB	1 82 ¹	89 ^f
\bigcirc	ОН	80	85
	рн	79	84
	H MIOH	70	72
$CH_2 = CH - (CH_2)_8 COOCH_3$	но-сн ₂ сн ₂ (сн ₂) ₈ соосн ₃	-	73g

Fable : Hydroboration-Oxidation of Alkenes^{a,b}

^aHg(OAc)₂ used is of Reagent Grade. Acetic acid was distilled after adding calculated amount of acetic anhydride to remove water. THF was distilled over LiAlH₄ or benzophenone-sodium. Sodium borohydride supplied by Fluka, Switzerland and the sample supplied by LOBA-CHEMIE, India, give identical results.

^bAcetoxyborohydride (20mmol) was prepared by slow addition of Hg(OAc)₂ (10mmol) or CH₃COOH (20mmol) to the suspension of NaBH₄ (20mmol) in THF (60ml) at 0°C for 1h. The reaction mixture was brought to room temperature and the alkene (20mmol) was added. The contents were further stirred for 12h before oxidation.

^cYields are of isolated and distilled products. The products are identified by the spectral data (ir, ¹H-NMR and ¹³C-NMR) and comparison with the data reported in the literature.

^dMethod A: Hydroboration with Hg(OAc)₂ - NaBH₄ and oxidation with H₂O₂/NaOH.

 $e_{Method B}$: Hydroboration with $CH_3COOH-NaBH_4$ and oxidation with $H_2O_2/NaOH$.

^fThe isomeric 1-phenylethanol is present to the extent of 8%. Products in other cases contain only small amount (<5%) of the isomeric alcohol (if any).

^gOxidation with H₂O₂/NaOOCCH₃.

Similar slow hydroboration is well known in the case of amine-borane complexes.⁵ However, the hydroboration with amine-borane complexes can be achieved only at elevated temperatures. Although the hydroboration of alkenes with acetoxyborohydride is slow, it occurs to significant extent at room temperature. This should make acetoxyborohydride a suitable reagent for the hydroboration of olefins in the presence of functional groups. In order to examine this possibility, we mixed 1-decene (10mmol) with 10mmol of cyclohexanone, benzonitrile, ethylbenzoate and benzamide in THF (60ml) in individual runs in the reaction with acetoxyborohydride (10mmol) at room temperature for 12h. Hydroboration of 1-decene takes place without the reduction of ethylbenzoate and benzamide. Also, cyclohexanone is completely reduced to cyclohexanol and benzonitrile is partly reduced to benzylamine (\sim 50%) along with complete hydroboration of 1-decene. Under these conditions methyl-10-undecenoate gives 11-hydroxyundecanoate (Table) after oxidation with NaOOCCH₃/H₂O₂ and the corresponding 1,11-diol is not formed.

Similar selectivities have been also observed with BH_3 -THF under controlled conditions.⁶ However, it should be pointed out that whereas in the present method the ester reduction does not take place inspite of the presence of two equivalents of "excess" B-H bonds, in the case of BH_3 -THF excess reagent should be avoided.⁶

The most interesting and important application of the reagent system is the selective hydroboration of the olefin when it is present in a molecule along with the carboxylic acid group (eg.10-undecenoic acid). As BH₃-THF reduces the carboxylic acid group faster than the hydroboration of olefin, it is necessary to protect the carboxylic group by esterification.⁶ The alternate method recommended for the direct selective hydroboration of olefin in the presence of carboxylic acid group requires 2 equivalents of disiamylborane which serves as both the protecting and hydroborating agent because of steric hindrance.^{7,8} However, we have found that this goal can be readily achieved by adding 10-undecenoic acid (10mmol) into NaBH₄ (10mmol) in THF (60ml) at 0°C for 1h and further stirring the reaction mixture for 12h at room temperature. After oxidation of the reaction mixture with NaOH/H₂O₂ and neutralization with 2N HCl, 11-hydroxy-undecanoic acid can be isolated in 85% yield and the corresponding 1,11-diol is not formed.

$$CH_2=CH-(CH_2)_8COOH \xrightarrow{NaBH_4} \xrightarrow{H_2O_2/OH^-} \xrightarrow{H^+} HO-CH_2-CH_2-(CH_2)_8COOH$$

Since the hydroboration with acetoxyborohydride is relatively slow the organoboron species formed using one equivalent of olefin may be probably the complexed "RBH₂" and/or "R₂BH" species. In order to examine this possibility we methanolysed the hydroboration product of 1-decene (10mmol) and acetoxyborohydride (10mmol) using the calculated amount of methanol. Chloroform (40mmol) was added followed by slow addition of NaOCH₃ (40mmol) in portions at 50°C for 1h using a solid addition flask under nitrogen atmosphere. After further stirring the reaction mixture for 1h at 50°C followed by oxidation with NaOH/H₂O₂, di-1-decylketone (48%) and 1-decanol (44%) (Scheme 1) were isolated. No trialkylcarbinol was present.

Scheme 1

$$\begin{array}{c} C_{8}H_{17}CH=CH_{2} \\ (10mmol) \\ (10mmol) \\ (10mmol) \\ CH_{3}COOBH_{3} \\ (10mmol) \\ CH_{3}OH \\ \hline CH_{3}OH \\ \hline CH_{3}OH \\ \hline CHCl_{3}/CH_{3}ONa \\ \hline 50^{\circ}C \\ \hline \\ H_{2}O_{2}/OH \\ \hline \hline$$

The above carbenoid reaction is similar to the "DCME" reaction using dichloromethylmethyl ether and lithium triethylcarboxide which is known to give trialkylcarbinol from R_3B , dialkylketone from R_2BOCH_3 and R-OH from $RB(OCH_3)_2$ after oxidation.⁶ Consequently, we conclude that the hydroboration of 1-decene with $CH_3COO\overline{B}H_3$ gives not only "RBH₂" species but also some "R₂BH" species under the present reaction conditions.

We are currently investigating the possibility of synthesising " RBH_2 " and " R_2BH " species and the application of these species in organic synthesis.

Acknowledgement: This research work is supported by UGC, New Delhi, special assistance to Organic Chemistry Research in the School of Chemistry, University of Hyderabad.

References:

- 1. C. Narayana and M. Periasamy, Synthesis, 1985, 0000.
- 2. G.F. Freeguard and L.H. Long, Chemistry and Industry, 1965, 471.
- 3. H.C. Brown and B.C. Subba Rao, J. Am. Chem. Soc., 1960, 82, 681.
- 4. V. Hach, Synthesis, 1974, 341.
- M. Zaidlewicz, 'Hydroborating Agents', in 'Comprehensive Organometallic Chemistry', Eds. G. Wilkinson, F.G.A. Stone and E.W. Abel, Pergamon Press, Oxford, Vol. 7, 1982.
- 6. H.C. Brown, 'Organic Synthesis via Boranes', Wiley-Interscience, New York, 1975.
- 7. H.C. Brown and D.B. Bigley, J. Am. Chem. Soc., 1961, 83, 486.
- 8. H.C. Brown, 'Boranes in Organic Chemistry', Cornell University Press, Ithaca, 1972.

(Received in UK 2 January 1985)